[docs]classDataSetBlock(BaseBlock,BlockIndexing):""" Data storage type for block processing in high throughput runs """def__init__(self,data:np.ndarray,aux_data:AuxiliaryData,slicing_dim:Literal[0,1,2]=0,block_start:int=0,chunk_start:int=0,global_shape:Optional[Tuple[int,int,int]]=None,chunk_shape:Optional[Tuple[int,int,int]]=None,padding:Tuple[int,int]=(0,0),):"""Constructs a data block for processing in the pipeline in high throughput runs. Parameters ---------- data: ndarray A numpy or cupy array, 3D, holding the data represented by this block. aux_data: AuxiliaryData Object handling the flats, darks, and angles arrays slicing_dim: Literal[0, 1, 2] The slicing dimension in the global data that this block represents as slice of. This is to facilitate parallel processing - data is sliced in one of the 3 dimensions. block_start: int The index in slicing dimensions within the chunk that this block starts at. It is relative to the start of the chunk. chunk_start: int The index in slicing dimension within the global data that the underlying chunk starts. A chunk is a unit of the global data that is handled by a single MPI process, while a block might be a smaller part than the chunk. global_shape: Optional[Tuple[int, int, int]] The shape of the global data across all processes. If not given, it assumes this block represents the full global data (no slicing done). chunk_shape: Optional[Tuple[int, int, int]] The shape of the chunk that this block belongs to. If not given, it assumes this block spans the full chunk. padding: Tuple[int, int] Padding information - holds the number of padded slices before and after the core area of the block, in slicing dimension. If not given, no padding is assumed. Note that the padding information should be added to the data's shape, i.e. block_start, chunk_start, chunk_shape, and the data's shape includes the padded slices. And therefore block_start or chunk_start may have negative values of up to -padding[0]. The global_shape is not adapted for padding. """super().__init__(data,aux_data)self._slicing_dim=slicing_dimself._block_start=block_startself._chunk_start=chunk_startself._padding=paddingifglobal_shapeisNone:global_shape_t=list(data.shape)global_shape_t[slicing_dim]-=padding[0]+padding[1]self._global_shape=make_3d_shape_from_shape(global_shape_t)else:self._global_shape=global_shapeifchunk_shapeisNone:self._chunk_shape=make_3d_shape_from_array(data)else:self._chunk_shape=chunk_shapechunk_index=[0,0,0]chunk_index[slicing_dim]+=block_startself._chunk_index=make_3d_shape_from_shape(chunk_index)global_index=[0,0,0]global_index[slicing_dim]+=chunk_start+block_start+padding[0]self._global_index=make_3d_shape_from_shape(global_index)self._check_inconsistencies()def_check_inconsistencies(self):ifself.padding[0]<0orself.padding[1]<0:raiseValueError("padding values cannot be negative")ifself.chunk_index[self.slicing_dim]+self._padding[0]<0:raiseValueError("block start index must be >= 0")if(self.chunk_index[self.slicing_dim]+self.shape[self.slicing_dim]-self._padding[1]>self.chunk_shape[self.slicing_dim]):raiseValueError("block spans beyond the chunk's boundaries")ifself.global_index[self.slicing_dim]+self._padding[0]<0:raiseValueError("chunk start index must be >= 0")if(self.global_index[self.slicing_dim]+self.shape[self.slicing_dim]-self._padding[1]>self.global_shape[self.slicing_dim]):raiseValueError("chunk spans beyond the global data boundaries")ifany(self.chunk_shape[i]>self.global_shape[i]foriinrange(3)ifi!=self.slicing_dim):raiseValueError("chunk shape is larger than the global shape in non-slicing dimensions")if(self.chunk_shape[self.slicing_dim]-self.padding[0]-self.padding[1]>self.global_shape[self.slicing_dim]):raiseValueError("chunk shape is larger than the global shape in slicing dimension")ifany(self.shape[i]>self.chunk_shape[i]foriinrange(3)):raiseValueError("block shape is larger than the chunk shape")ifany(self.shape[i]!=self.global_shape[i]foriinrange(3)ifi!=self.slicing_dim):raiseValueError("block shape inconsistent with non-slicing dims of global shape")assertnotany(self.chunk_shape[i]!=self.global_shape[i]foriinrange(3)ifi!=self.slicing_dim)@propertydefchunk_index(self)->Tuple[int,int,int]:"""The index of this block within the chunk handled by the current process"""returnself._chunk_index@propertydefchunk_shape(self)->Tuple[int,int,int]:"""Shape of the full chunk handled by the current process"""returnself._chunk_shape@propertydefglobal_index(self)->Tuple[int,int,int]:"""The index of this block within the global data across all processes"""returnself._global_index@propertydefglobal_shape(self)->Tuple[int,int,int]:"""Shape of the global data across all processes"""returnself._global_shape@propertydefis_last_in_chunk(self)->bool:"""Check if the current dataset is the final one for the chunk handled by the current process"""return(self.chunk_index[self._slicing_dim]+self.shape[self._slicing_dim]==self.chunk_shape[self._slicing_dim]-self.padding[0])@propertydefslicing_dim(self)->Literal[0,1,2]:returnself._slicing_dimdef_empty_aux_array(self):empty_shape=list(self._data.shape)empty_shape[self.slicing_dim]=0returnnp.empty_like(self._data,shape=empty_shape)@propertydefdata(self)->generic_array:returnsuper().data@data.setterdefdata(self,new_data:generic_array):global_shape=list(self._global_shape)chunk_shape=list(self._chunk_shape)foriinrange(3):ifi!=self.slicing_dim:global_shape[i]=new_data.shape[i]chunk_shape[i]=new_data.shape[i]elifself._data.shape[i]!=new_data.shape[i]:raiseValueError("shape mismatch in slicing dimension")self._data=new_dataself._global_shape=make_3d_shape_from_shape(global_shape)self._chunk_shape=make_3d_shape_from_shape(chunk_shape)@data.deleterdefdata(self):delself._datadelself._global_shapedelself._chunk_shape@propertydefis_padded(self)->bool:returnself._padding!=(0,0)@propertydefpadding(self)->Tuple[int,int]:returnself._padding@propertydefshape_unpadded(self)->Tuple[int,int,int]:returnself._correct_shape_for_padding(self.shape)@propertydefchunk_index_unpadded(self)->Tuple[int,int,int]:returnself._correct_index_for_padding(self.chunk_index)@propertydefchunk_shape_unpadded(self)->Tuple[int,int,int]:returnself._correct_shape_for_padding(self.chunk_shape)@propertydefglobal_index_unpadded(self)->Tuple[int,int,int]:returnself._correct_index_for_padding(self.global_index)def_correct_shape_for_padding(self,shape:Tuple[int,int,int])->Tuple[int,int,int]:ifnotself.padding:returnshapeshp=list(shape)shp[self.slicing_dim]-=self.padding[0]+self.padding[1]returnmake_3d_shape_from_shape(shp)def_correct_index_for_padding(self,index:Tuple[int,int,int])->Tuple[int,int,int]:ifnotself.padding:returnindexidx=list(index)idx[self.slicing_dim]+=self.padding[0]returnmake_3d_shape_from_shape(idx)@propertydefdata_unpadded(self)->generic_array:ifnotself.padding:returnself.datad=self.dataslices=[slice(None),slice(None),slice(None)]slices[self.slicing_dim]=slice(self.padding[0],d.shape[self.slicing_dim]-self.padding[1])returnd[slices[0],slices[1],slices[2]]