httomo.transform_loader_params

httomo.transform_loader_params#

Classes

ContinuousScanSubsetParam

Configuration for selecting a subset of the input dataset along the angular dimension.

DarksFlatsParam

Darks/flats configuration dict.

PreviewParam

Preview configuration dict.

RawAnglesParam

Angles configuration dict for when the rotation angle values are in a dataset within the input NeXuS/hdf5 file.

StartStopEntry

Configuration for a single dimension's previewing in terms of start/stop values.

UserDefinedAnglesParam

Angles configuration dict for when the rotation angle values are manually defined (rather than taken from the input NeXuS/hdf5 file).

UserDefinedAnglesParamInner

Start, stop, and total angles configuration to generate the rotation angle values.

Functions

find_tomo_entry(input_file)

Find group within the NeXuS file which adheres to the NXtomo application definition.

parse_angles(angles_data)

Convert python dict representing angles information generated from parsing the pipeline file, into an internal angles configuration type that loaders can use.

parse_config(input_file, config)

Convert python dict representing loader parameters generated from parsing the pipeline file, into internal configuration types which provide all information that a loader needs.

parse_darks_flats(data_config, ...)

Convert python dict representing darks/flats information generated from parsing the pipeline file, into an internal darks/flats configuration type that loaders can use.

parse_data(in_file, data_path)

Convert python dict representing data information generated from parsing the pipeline file, into an internal data configuration type that loaders can use.

parse_preview(param_value, data_shape)

Convert python dict representing preview information generated from parsing the pipeline file, into an internal preview configuration type that loaders can use.

select_continuous_scan_subset(...)

Transform a PreviewConfig to select a subset of a dataset described by a ContinuousScanSubsetParam.

Types that represent python dicts for angles, preview, and darks/flats configuration, which are generated from parsing a pipeline file into python, and functions to transform these python dicts to internal types that loaders can use.