httomo.method_wrappers.generic.GenericMethodWrapper#

class httomo.method_wrappers.generic.GenericMethodWrapper(method_repository: MethodRepository, module_path: str, method_name: str, comm: mpi4py.MPI.Comm, save_result: bool | None = None, output_mapping: Dict[str, str] = {}, **kwargs)[source]#

Defines a generic method backend wrapper in httomo which is used by task runner.

Method parameters (configuration parameters, usually set by the user) can be set either using keyword arguments to the constructor, or by using conventional dictionary set/get methods like:

wrapper["parameter"] = value

Methods

__init__(method_repository, module_path, ...)

Constructs a MethodWrapper for a method located in module_path with the name method_name.

append_config_params(params)

Append configuration parameters to the existing config_params

calculate_max_slices(data_dtype, ...)

If it runs on GPU, determine the maximum number of slices that can fit in the available memory in bytes, and return a tuple of

calculate_output_dims(non_slice_dims_shape)

Calculate the dimensions of the output for this method

calculate_padding()

Calculate the padding required by the method

execute(block)

Execute functions for external packages.

get_side_output()

Override this method for functions that have a side output.

requires_preview()

Whether the wrapper class needs the preview information from the loader to execute the methods it wraps or not.

should_select_this_class(module_path, ...)

Method to dermine if this class should be used for wrapper instantiation, given the module path and method name.

Attributes

comm

The MPI communicator used

config_params

Access a copy of the configuration parameters (cannot be modified directly)

cupyrun

True if method runs on GPU and expects a CuPy array as inputs

gpu_time

Get the time spent on GPU in the last call to execute

implementation

Implementation of this method

is_cpu

True if this is a CPU-only method

is_gpu

True if this is a GPU method

memory_gpu

Memory requirements for GPU execution

method

The actual method underlying this wrapper

method_name

Returns the name of the method function

module_path

Returns the full module path where the method function is defined

output_dims_change

Whether output dimensions change after executing this method

package_name

The name of the top-level package where this method is implementated, e.g. 'httomolib'.

padding

Determine if the method needs padding

parameters

List of parameter names of the underlying method

recon_algorithm

Determine the recon algorithm used, if the method is reconstruction.

save_result

Whether to save the result of this method to intermediate files

sweep

Determine if the method performs sweep

task_id

pattern

append_config_params(params: Dict[str, str | bool | int | float | PathLike | ndarray | cupy.ndarray | List[str | bool | int | float | PathLike | ndarray | cupy.ndarray]])[source]#

Append configuration parameters to the existing config_params

calculate_max_slices(data_dtype: dtype, non_slice_dims_shape: Tuple[int, int], available_memory: int) Tuple[int, int][source]#

If it runs on GPU, determine the maximum number of slices that can fit in the available memory in bytes, and return a tuple of

(max_slices, available_memory)

The available memory may have been adjusted for the methods that follow, in case something persists afterwards.

calculate_output_dims(non_slice_dims_shape: Tuple[int, int]) Tuple[int, int][source]#

Calculate the dimensions of the output for this method

calculate_padding() Tuple[int, int][source]#

Calculate the padding required by the method

property comm: mpi4py.MPI.Comm#

The MPI communicator used

property config_params: Dict[str, Any]#

Access a copy of the configuration parameters (cannot be modified directly)

property cupyrun: bool#

True if method runs on GPU and expects a CuPy array as inputs

execute(block: T) T[source]#

Execute functions for external packages.

Developer note: Derived classes may override this function or any of the methods it uses to modify behaviour.

Parameters:

block (T (implements Block)) – A numpy or cupy dataset, mutable (method might work in-place).

Returns:

A CPU or GPU-based dataset object with the output

Return type:

T (implements Block)

get_side_output() Dict[str, Any][source]#

Override this method for functions that have a side output. The returned dictionary will be merged with the dict_params parameter passed to execute for all methods that follow in the pipeline

property gpu_time: GpuTimeInfo#

Get the time spent on GPU in the last call to execute

property implementation: Literal['gpu', 'cpu', 'gpu_cupy']#

Implementation of this method

property is_cpu: bool#

True if this is a CPU-only method

property is_gpu: bool#

True if this is a GPU method

property memory_gpu: httomo_backends.methods_database.query.GpuMemoryRequirement | None#

Memory requirements for GPU execution

property method: Callable#

The actual method underlying this wrapper

property method_name: str#

Returns the name of the method function

property module_path: str#

Returns the full module path where the method function is defined

property output_dims_change: bool#

Whether output dimensions change after executing this method

property package_name: str#

The name of the top-level package where this method is implementated, e.g. ‘httomolib’

property padding: bool#

Determine if the method needs padding

property parameters: List[str]#

List of parameter names of the underlying method

property recon_algorithm: str | None#

Determine the recon algorithm used, if the method is reconstruction. Otherwise return None.

classmethod requires_preview() bool[source]#

Whether the wrapper class needs the preview information from the loader to execute the methods it wraps or not.

property save_result: bool#

Whether to save the result of this method to intermediate files

classmethod should_select_this_class(module_path: str, method_name: str) bool[source]#

Method to dermine if this class should be used for wrapper instantiation, given the module path and method name.

The make_method_wrapper function will iterate through all subclasses and evaluate this condition in the order of declaration, falling back to GenericMethodWrapper if all evaluate to False.

Therefore, deriving classes should override this method to indicate the criteria when they should be instantiated.

property sweep: bool#

Determine if the method performs sweep