Creating a Device
This tutorial shows how to create a simple Device
for use in the tickit framework.
This device will act as a simple shutter which can vary the transmission of flux
by
changing position
.
Device Module File
We shall begin by creating a new python module named my_shutter.py
, and open it
with our preferred editor. This file will be used to store the Shutter
class which
will determine the operation of our device.
Device Class
We shall begin by defining the Shutter class which inherits Device
- by
doing so a confiuration dataclass will automatically be created for the device,
allowing for easy YAML configuration.
from tickit.core.device import Device
class ShutterDevice(Device):
Device Constructor and Configuration
Next, we shall create the __init__
method, allowing for the device to be
instantiated. We will pass two arguments to this method; a required argument,
default_position
, which will specify the target_position
of the shutter in the
absence of any other instruction; and an optional argument, initial_position
,
which when specified will set the initial position
of the shutter, if unspecified
the initial position
will be random.
from random import random
from typing import Optional
from tickit.core.device import Device
class ShutterDevice(Device):
def __init__(
self, default_position: float, initial_position: Optional[float] = None
) -> None:
self.target_position = default_position
self.position = initial_position if initial_position else random()
Note
Arguments to the __init__
method may be specified in the simulation config file
if the device inherits Device
.
Device Logic
The core logic of the device will be implemented in the update
method which
recieves the arguments time
- the current simulation time in nanoseconds - and
inputs
- a mapping of input ports to their value - and returns an DeviceUpdate
which consists of outputs
- a mapping of output ports and their value - and
call_at
- the time at which the device should next be updated.
from random import random
from typing import Optional
from typing_extensions import TypedDict
from tickit.core.device import Device, DeviceUpdate
from tickit.core.typedefs import SimTime
class ShutterDevice(Device):
Inputs = TypedDict("Inputs", {"flux": float})
Outputs = TypedDict("Outputs", {"flux": float})
def __init__(
self, default_position: float, initial_position: Optional[float] = None
) -> None:
self.target_position = default_position
self.position = initial_position if initial_position else random()
self.rate = 2e-10
self.last_time: Optional[SimTime] = None
@staticmethod
def move(position: float, target: float, rate: float, period: SimTime) -> float:
if position < target:
position = min(position + rate * period, target)
elif position > target:
position = max(position - rate * period, target)
return position
def update(self, time: SimTime, inputs: Inputs) -> DeviceUpdate[Outputs]:
if self.last_time:
self.position = Shutter.move(
self.position,
self.target_position,
self.rate,
SimTime(time - self.last_time),
)
self.last_time = time
call_at = None if self.position == self.target_position else SimTime(time + int(1e8))
output_flux = inputs["flux"] * self.position
return DeviceUpdate(Shutter.Outputs(flux=output_flux), call_at)
Creating a ComponentConfig
In order to run the Device as a simulation, it requires a ComponentConfig
that
knows how to instantiate that Device. This will be defined in the same file as the
device, and defines any default initial configuration values. As well as this, we
overwrite the magic method __call__()
, which returns a DeviceSimulation
object.
This object takes the component name, as well as it’s device. We will return to this
if the device requires any adapters to control it externally (see Creating an Adapter).
from tickit.core.components.component import Component, ComponentConfig
from tickit.core.components.device_simulation import DeviceSimulation
@dataclass
class Shutter(ComponentConfig):
default_position: float
initial_position: Optional[float] = None
def __call__(self) -> Component:
return DeviceSimulation(
name=self.name,
device=ShutterDevice(
default_position=self.default_position,
initial_position=self.initial_position,
),
)
Using the Device
In order to use the device we must first create a simulation configuration file, we
shall create one named my_shutter_simulation.yaml
, and open it with our preferred
editor. This file will be used to set up a simulation consisting of a Source
named
source which will produce a constant flux, the shutter which will act on the flux as
per our implementation, and a Sink
named sink which will recieve the resulting flux.
- tickit.devices.source.Source:
name: source
inputs: {}
value: 42.0
- examples.devices.shutter.Shutter:
name: shutter
inputs:
flux: source:value
default_position: 0.2
initial_position: 0.24
- tickit.devices.sink.Sink:
name: sink
inputs:
flux: shutter:flux
See also
See the Creating a Simulation tutorial for a walk-through of creating simulation configurations.
Finally, we likely wish to run the simulation, this may be performed by running the following command:
python -m tickit all my_shutter_simulation.yaml
Once run, we expect to see an output akin to:
Doing tick @ 0
source got Input(target='source', time=0, changes=immutables.Map({}))
Sourced 42.0
Scheduler got Output(source='source', time=0, changes=immutables.Map({'value': 42.0}), call_in=None)
shutter got Input(target='shutter', time=0, changes=immutables.Map({'flux': 42.0}))
Scheduler got Output(source='shutter', time=0, changes=immutables.Map({'flux': 10.08}), call_in=100000000)
Scheduling Wakeup(component='shutter', when=100000000)
sink got Input(target='sink', time=0, changes=immutables.Map({'flux': 10.08}))
Sunk {'flux': 10.08}
Scheduler got Output(source='sink', time=0, changes=immutables.Map({}), call_in=None)
Doing tick @ 100000000
shutter got Input(target='shutter', time=100000000, changes=immutables.Map({}))
Scheduler got Output(source='shutter', time=100000000, changes=immutables.Map({}), call_in=100000000)
Scheduling Wakeup(component='shutter', when=200000000)
sink got Input(target='sink', time=100000000, changes=immutables.Map({}))
Sunk {'flux': 10.08}
Scheduler got Output(source='sink', time=100000000, changes=immutables.Map({}), call_in=None)
Doing tick @ 200000000
shutter got Input(target='shutter', time=200000000, changes=immutables.Map({}))
Scheduler got Output(source='shutter', time=200000000, changes=immutables.Map({'flux': 9.24}), call_in=100000000)
Scheduling Wakeup(component='shutter', when=300000000)
sink got Input(target='sink', time=200000000, changes=immutables.Map({'flux': 9.24}))
Sunk {'flux': 9.24}
Scheduler got Output(source='sink', time=200000000, changes=immutables.Map({}), call_in=None)
Doing tick @ 300000000
shutter got Input(target='shutter', time=300000000, changes=immutables.Map({}))
Scheduler got Output(source='shutter', time=300000000, changes=immutables.Map({'flux': 8.4}), call_in=None)
sink got Input(target='sink', time=300000000, changes=immutables.Map({'flux': 8.4}))
Sunk {'flux': 8.4}
Scheduler got Output(source='sink', time=300000000, changes=immutables.Map({}), call_in=None)
See also
See the Running a Simulation tutorial for a walk-through of running a simulation in a single or across multiple processes.