nexus_scan¶
NeXus Scan Classes
NexusScan - NeXus Scan class, lazy loader of scan files NexusDataHolder - Loads scan data and meta data into attributes
NexusDataHolder
¶
Bases: DataHolder, NexusScan
Nexus data holder class - Automatically reads scannable and metadata from file - acts like the old .dat DataHolder class - has additional functions to read data from NeXus file
Example: scan = NexusDataHolder('12345.nxs') scan.eta -> returns array scan.metadata.metadata -> returns value scan('signal') -> evaluate expression
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
filename
|
str | None
|
path to Nexus file |
required |
hdf_map
|
NexusMap | None
|
NexusMap object or None to generate |
None
|
flatten_scannables
|
bool
|
if True, flattens all scannable arrays to 1D |
True
|
Source code in mmg_toolbox/nexus/nexus_scan.py
NexusScan
¶
Bases: NexusLoader
Light-weight NeXus file reader
Example: scan = NexusScan('scan.nxs') scan('scan_command') -> returns value
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
nxs_filename
|
str
|
path to nexus file |
required |
hdf_map
|
NexusMap | None
|
NexusMap object or None |
None
|
Source code in mmg_toolbox/nexus/nexus_scan.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | |
arrays(*args, units='', default=np.array([np.nan]))
¶
Return Numpy arrays
Source code in mmg_toolbox/nexus/nexus_scan.py
datasets(*args)
¶
Return HDF5 datasets from NeXus file (leaves file in open state)
image(index=None)
¶
instrument_model()
¶
load_hdf()
¶
strings(*args, units=False)
¶
table(delimiter=', ', string_spec='', format_spec='f', default_decimals=8)
¶
Return data table
Source code in mmg_toolbox/nexus/nexus_scan.py
times(*args)
¶
values(*args, value_func=np.mean, units='', default=np.array(np.nan))
¶
Return float values