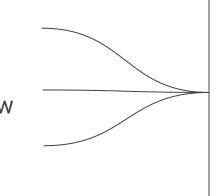
SuRVoS Workbench

Super-Region Volume Segmentation

Imanol Luengo

Index

- The project
- What is **SuRVoS**
- SuRVoS Overview
- What can it do



- Overview of the internals
- Current state & Limitations
- Future direction
- Goal of the project

SuRVoS Project

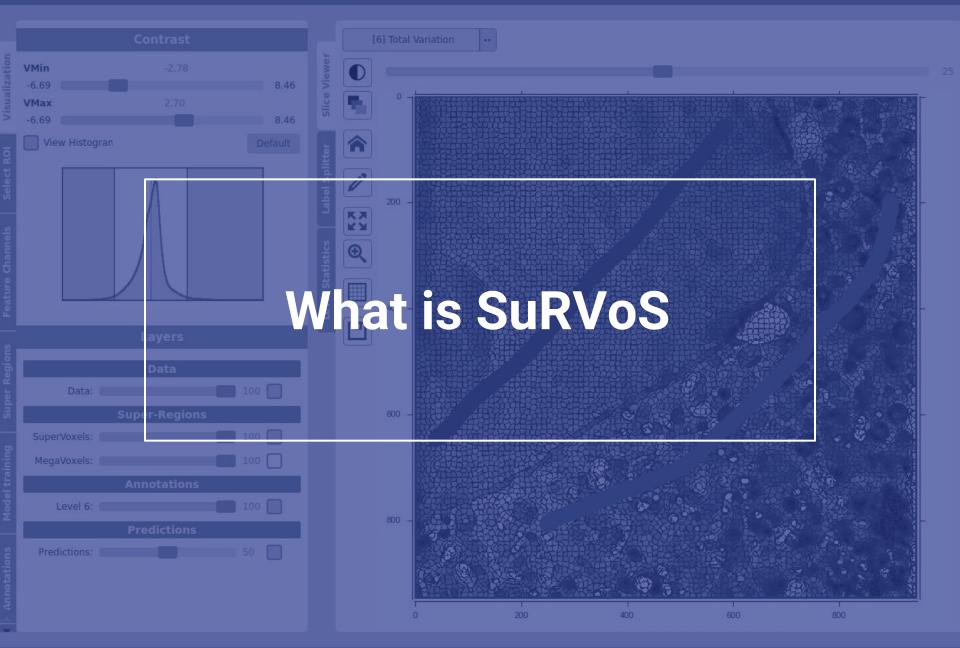
University of Nottingham:

• Computer Vision Laboratory

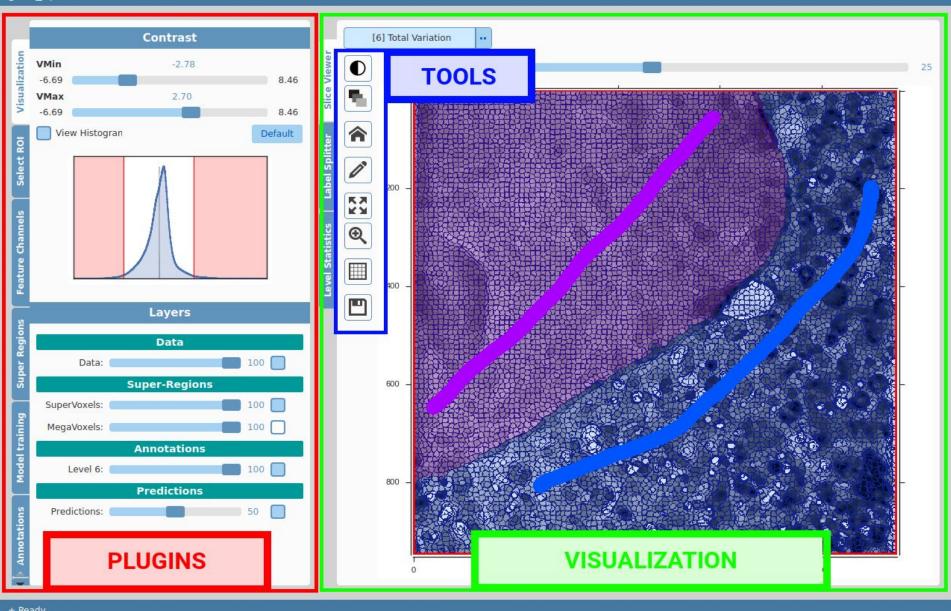
Diamond Light Source:

• B24: Cryo Transmission X-ray Microscopy

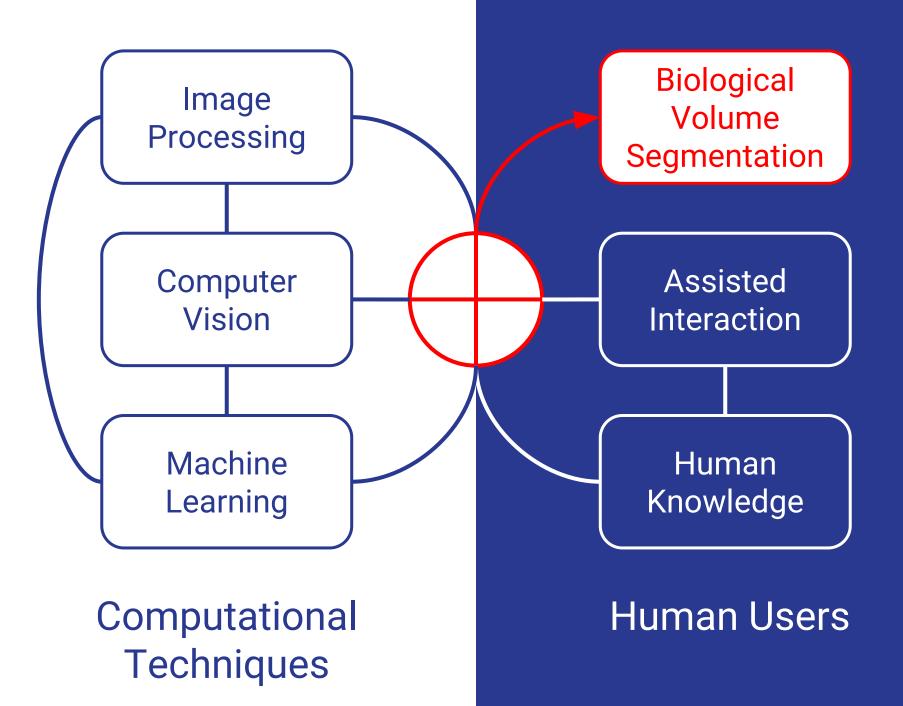
e <u>H</u>elp

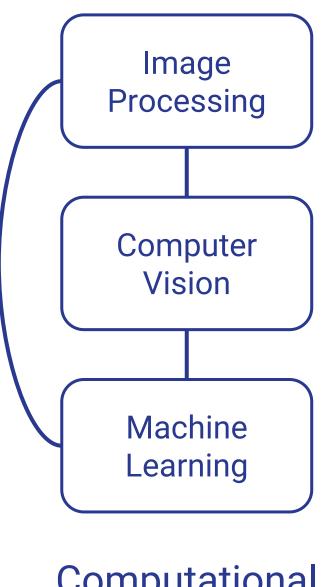


File Help

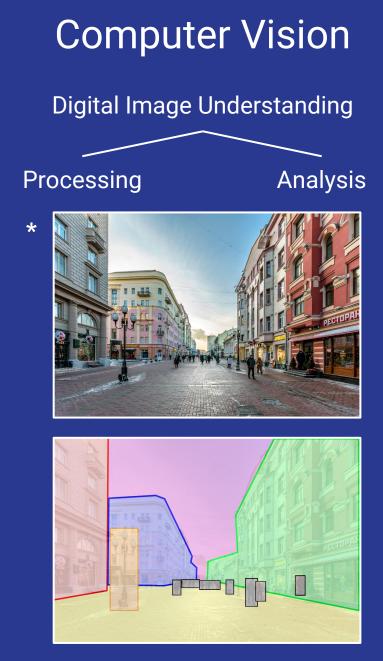


https://DiamondLightSource.github.io/SuRVoS

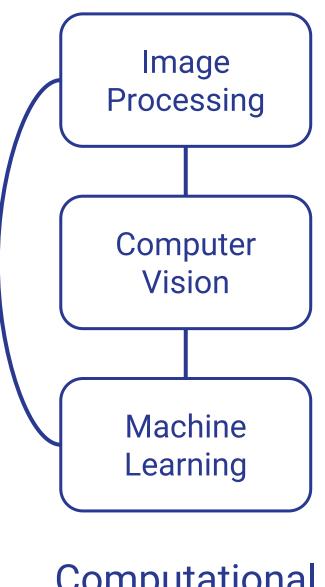




Computational Techniques



* Original Image: https://en.wikipedia.org/wiki/Arbat_Street



Computational Techniques

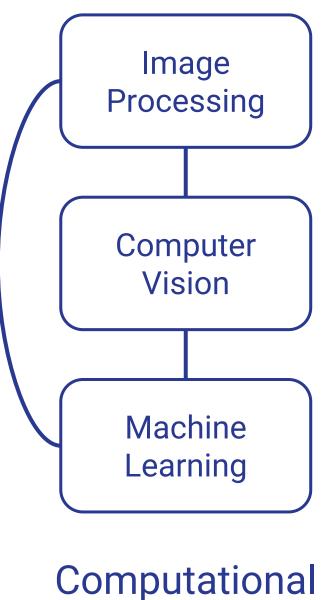
Image Processing

Image Manipulation and Enhancing

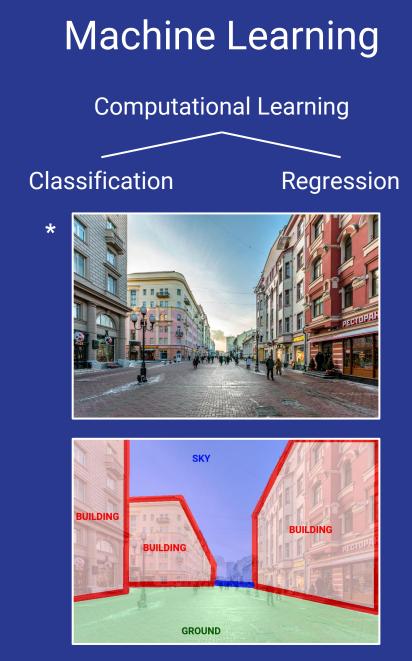
Noise Reduction

Feature Extraction

* Original Image: https://en.wikipedia.org/wiki/Arbat_Street



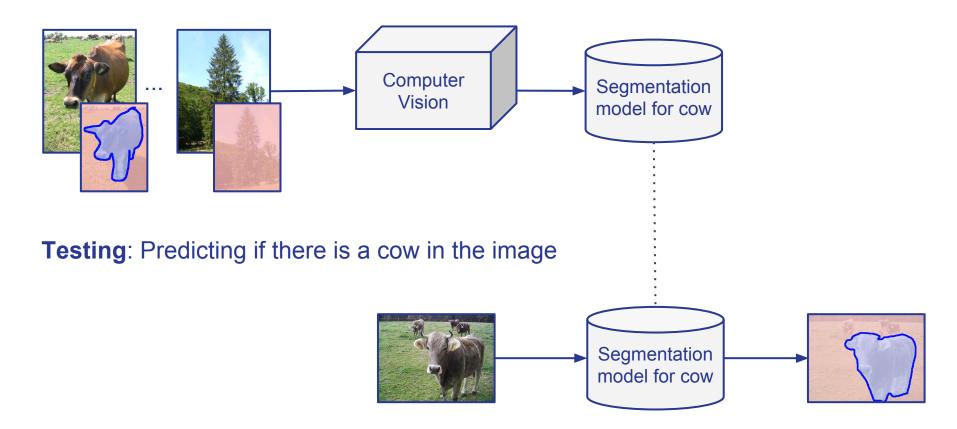
Techniques



* Original Image: https://en.wikipedia.org/wiki/Arbat_Street

Automatic Computer Vision

Training: Learning to identify cows



Cow Image: <u>https://commons.wikimedia.org/wiki/Cattle#/media/File:Jersey_cattle_in_Jersey.jpg</u>, <u>https://commons.wikimedia.org/wiki/Cattle#/media/File:Braunvieh06.JPG</u> Tree Image: <u>https://commons.wikimedia.org/wiki/Tree#/media/File:GemeineFichte.jpg</u>

Automatic Computer Vision

Pros:

- Learns from annotations.
- Fast and accurate results.
- Completely automatic.
- Generalizable for new images.

Cons:

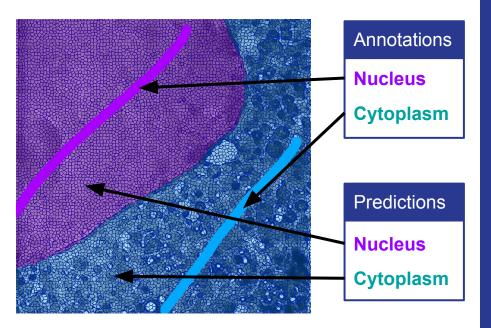
- Requires a lot of annotated data.
- Slow learning process.
- Can only learn specific tasks.
- Data to be analysed has to be similar.

SuRVoS

Biological Volume Segmentation

Problem

- Different imaging modalities / cell type
- Organelles have different shape / appearance
- No previous training data is available



SuRVoS

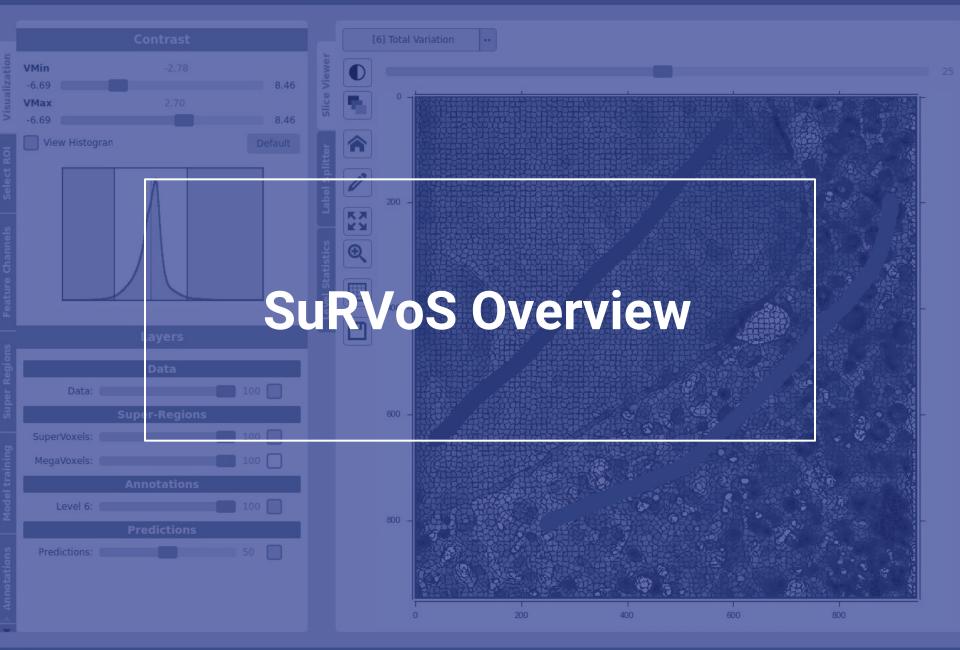
- Assist the user to annotate data.
- Learn to segment with user annotations.

Assisted Interaction

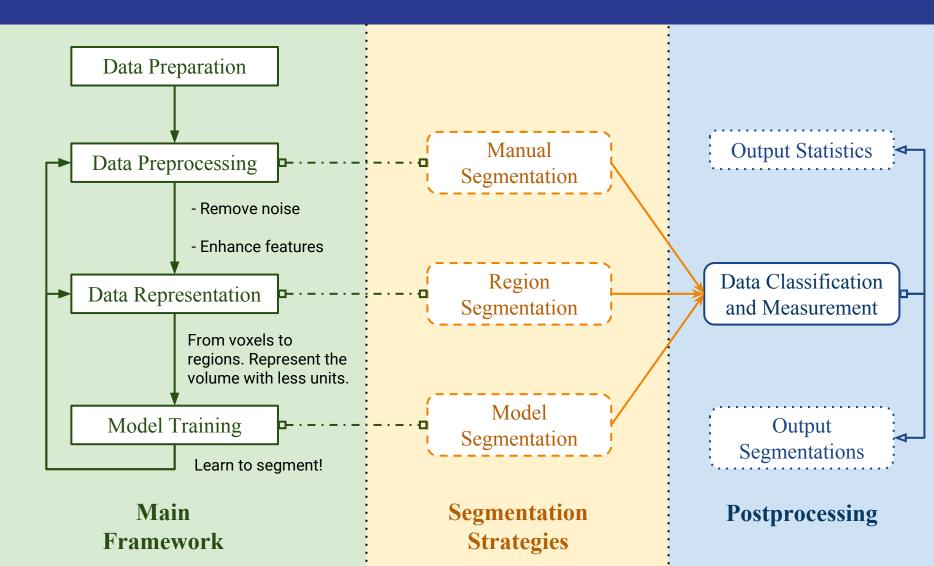
Human Knowledge

Human Users

e <u>H</u>elp

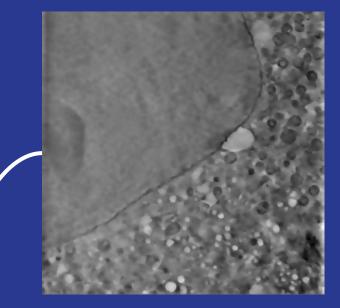


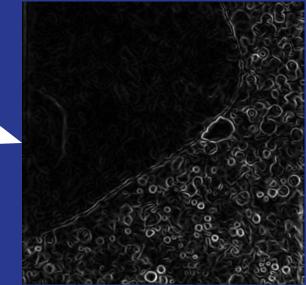
SuRVoS Overview



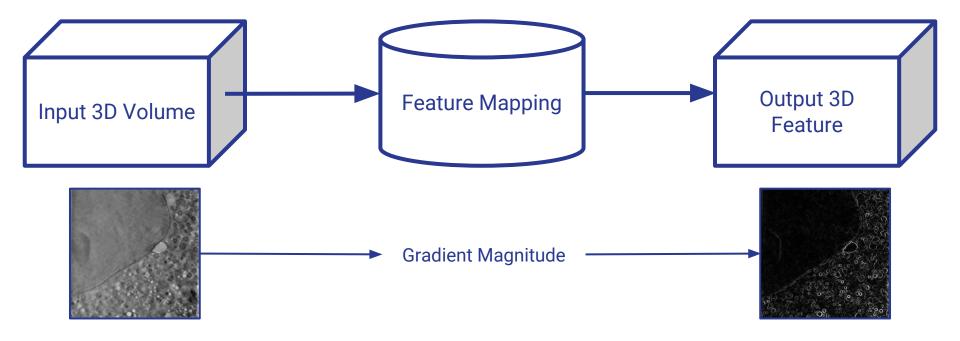
Data Preprocessing Enhancing data properties

- Raw Features
- Denoising
- Local Features
- Gaussian Features
- Blob-like Detection
- Texture and Structure
- Robust Features

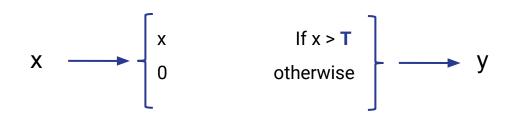




- Every preprocessing method outputs a *feature channel*
- *Feature channels* are obtained by modifying each pixel according to a function applied to their neighbourhood.
- *Feature channels* are volumes of the same size as the input volume
- Feature channels can be visualized inside SuRVoS

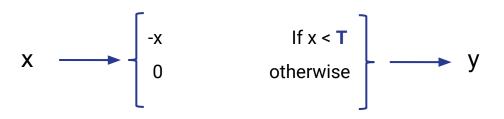


- Raw Features
- Denoising
- Local Features
- Gaussian Features
- Blob-like Detection
- Texture and Structure
- Robust Features



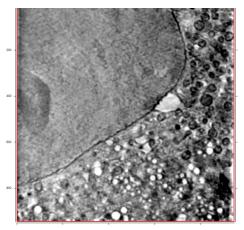
Inverse Thresholding

Thresholding

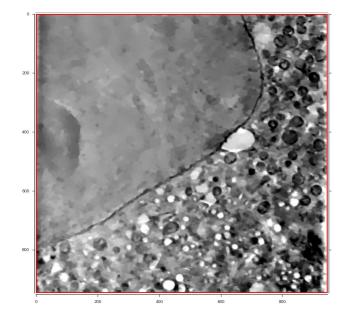


- Raw Features
- Denoising
- Local Features
- Gaussian Features
- Blob-like Detection
- Texture and Structure
- Robust Features

Original Image



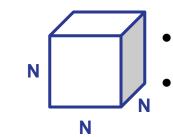
Gaussian Smooth

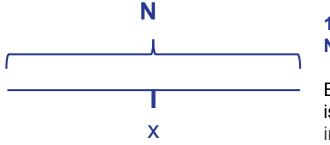


Total Variation

- Over-smooth
- Preserve Strong Edges
- Easier to identify objects

- Raw Features
- Denoising
- Local Features
- Gaussian Features
- Blob-like Detection
- Texture and Structure
- Robust Features





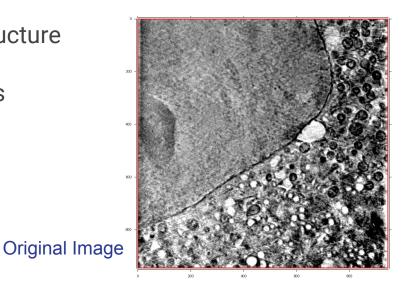
1D Uniform Neighbourhood of size N:

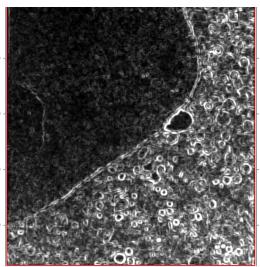
Every pixel in the neighbour is aggregated to **x** with equal importance

A cube of shape N x N x N centered on each voxel x

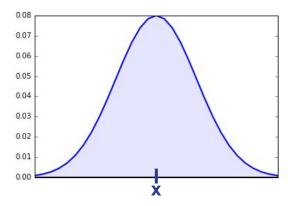
Function of all the intensities in that cube

Standard Deviation





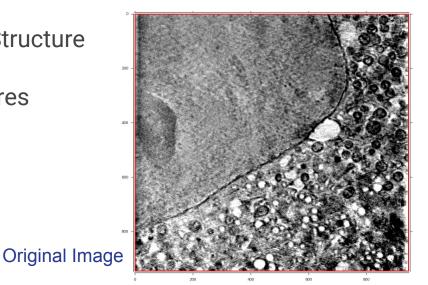
- Raw Features
- Denoising
- Local Features
- Gaussian Features
- Blob-like Detection
- Texture and Structure
- Robust Features



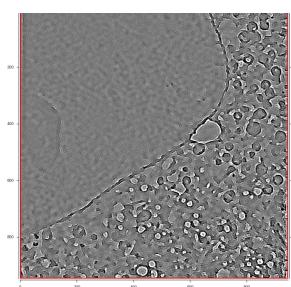
1D Gaussian:

Pixels near the center have more importance.

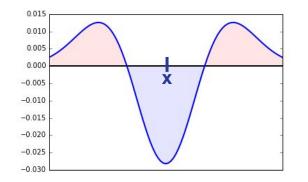
- A Gaussian neighbourhood of size N x N x N centered on every pixel
- Better data fidelity.



Mean Subtraction



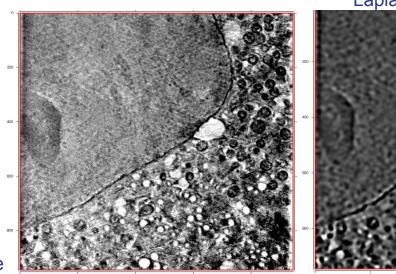
- Raw Features
- Denoising
- Local Features
- Gaussian Features
- Blob-like Detection
- Texture and Structure
- Robust Features



1D Laplacian of Gaussian:

Intensity near the center is substracted to the surroundings: (*x* = *red* - *blue*).

- A Laplacian neighbourhood of size N x N x N centered
- Identify objects brighter or darker than their surroundings.



Laplacian of Gaussian

Original Image

- Raw Features
- Denoising
- Local Features
- Gaussian Features
- Blob-like Detection
- Texture and Structure
- Robust Features

Projects the data to analyze its main axis of variance

- Hessian Eigenvalues: texture
- Structure Tensor Eigenvalues: structure

Original Image

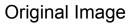
Largest Eigenvalue of the Hessian Matrix

- Raw Features
- Denoising
- Local Features
- Gaussian Features
- Blob-like Detection
- Texture and Structure
- Robust Features

Apply any of the previous ones in a Multi-scale fashion

- Filter the scale with maximum value.

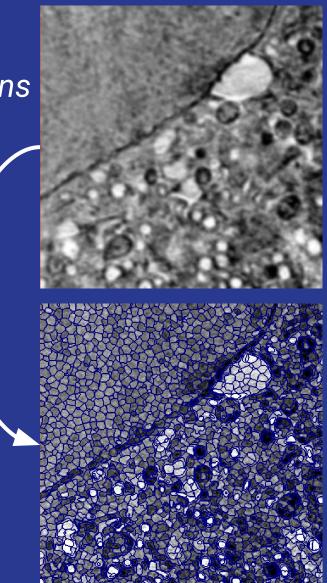
In other words, find objects of any size at once.



Multi-scale Laplacian of Gaussian

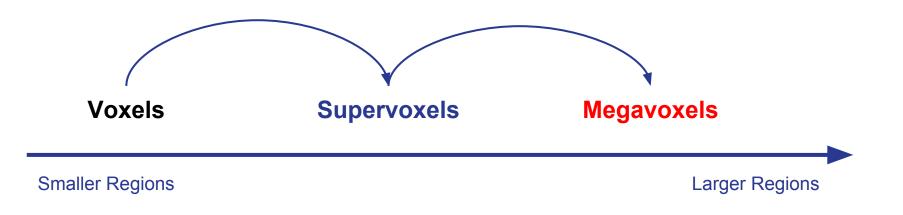
Data Representation Represent data in coherent regions

- Voxels
- SuperVoxels
- MegaVoxels



Super-Regions

- Hierarchical Region representation of the volume
- **Voxels** are the smallest representative units
- **Supervoxels** are groups of similar and adjacent **voxels**
- Megavoxels are groups of similar and adjacent Supervoxels



Over-segmentation layers

Image

1st-order super-regions (SuperPixels)

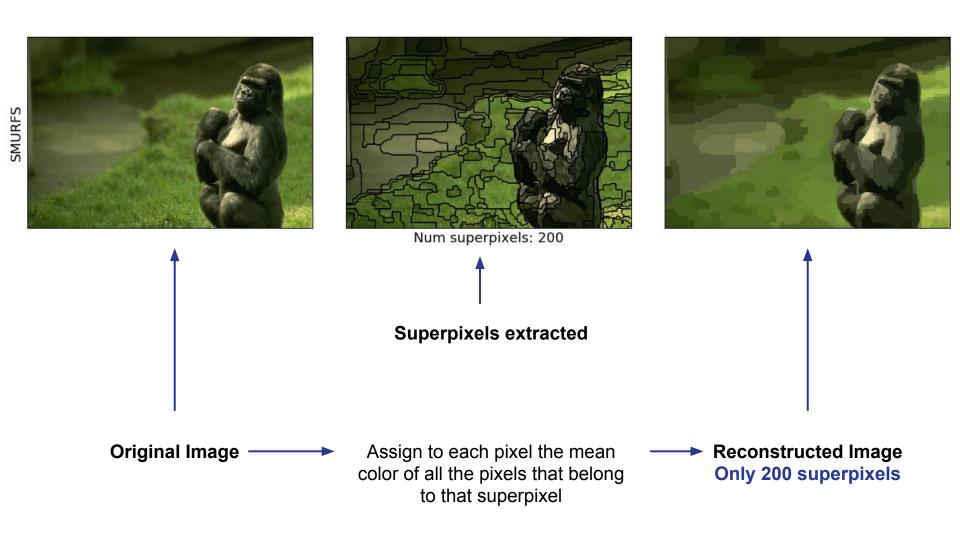
400

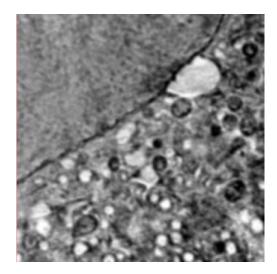
321x481 = 154401 **Pixels**

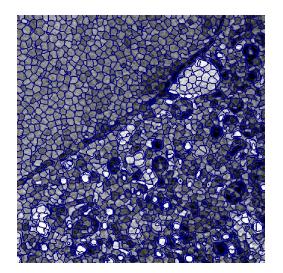
Superpixels

2nd-order super-regions (SuperSegments)

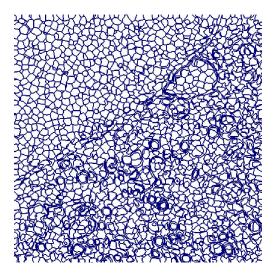
> 50 Megapixels

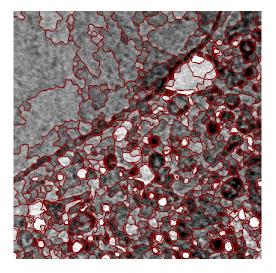




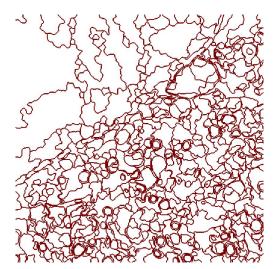


Supervoxels





Megavoxels



- In 3D, **Supervoxels** are groups of similar and adjacent voxels
- Megavoxels are groups of similar and adjacent Supervoxels
- **Supervoxels** and **Megavoxels** adhere to volume boundaries.
- Both are **completely unsupervised** (don't require human interaction)

Voxels	Supervoxels	Megavoxels
1000x1000x500 = 500M	10x10x10 => 500K	20-50K
Smaller Regions / More regions		Larger Regions / Less Regions

- Fast to compute and reduce further processing several orders of magnitude.
- By annotating **Supervoxels**, objects can be easily segmented without having to manually delineate boundaries.

Model Training Learn from annotations. Propagate through volume.

- Data Points
- Descriptors
- Annotations
- Classifier
- Refinement
- Confidence

- Data points
- Descriptors
- Annotations
- Classifier
- Refinement
- Confidence

Data units that are going to be:

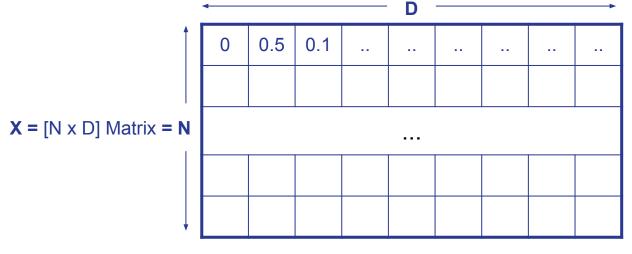
• Voxels:

• Learn to model voxels to predict voxels

- Supervoxels
 - Learn to model Supervoxels to predict Supervoxels
 - Several orders of magnitude faster.

- Data points
- Descriptors
- Annotations
- Classifier
- Refinement
- Confidence

Data points are represented with descriptors. E.g. Voxel descriptors are created by concatenating features extracted from **Data Preprocessing**.



N: Number of data points; D: Number of features

Descriptor Types:

- Voxels
- Supervoxels

- Data points
- Descriptors
- Annotations
- Classifier
- Refinement
- Confidence

In order to learn to classify between different labels, for some data points annotations are needed.

X = [N x D] Data Matrix

Y = [N x 1] Matrix = **N**

- N: Number of data points
- **D:** Number of features selected
- X: Descriptor Matrix
- Y: class type for each of the data points in X
 - **>0** = class for the data point (e.g. 0=nucleus)
 - -1 = unknown class. What we want to predict.

- Data points
- Descriptors
- Annotations
- Classifier

1.5

1.0

0.5

0.0

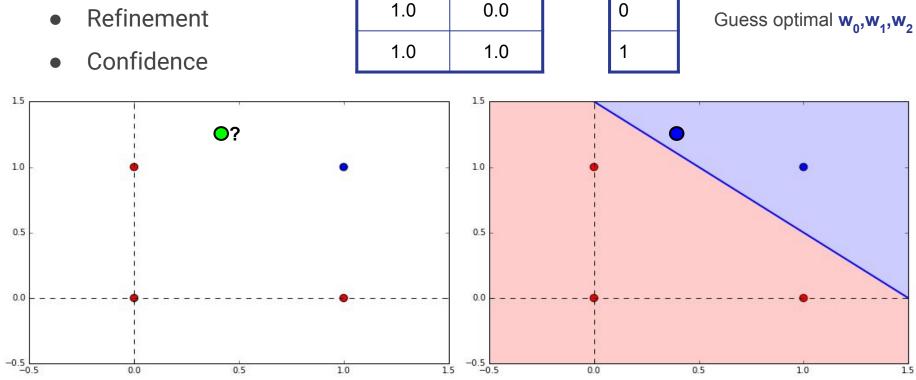
Refinement

Y =

0

 $y = w_0 + x_1 * w_1 + x_2 * w_2$

Simplified example with N = 4 data points and D = 2 features.



1.0

0.0

X =

- Data points
- Descriptors
- **Annotations**
- Classifier
- Refinement

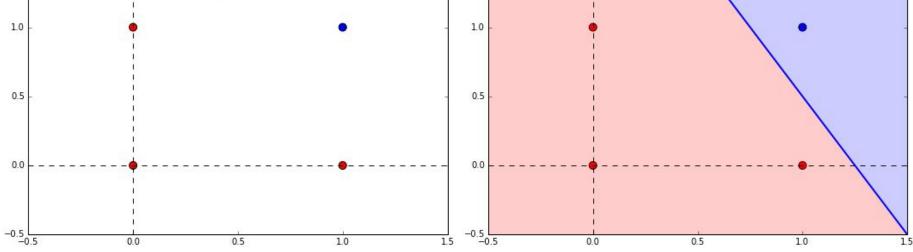
Confidence

PROBLEM:

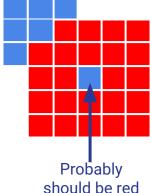
On interactive Segmentation we only have limited data available.

What if after inspection we realise it actually should be red?

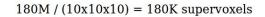
Refine Classification Annotate + retrain 15 1.5 1.0



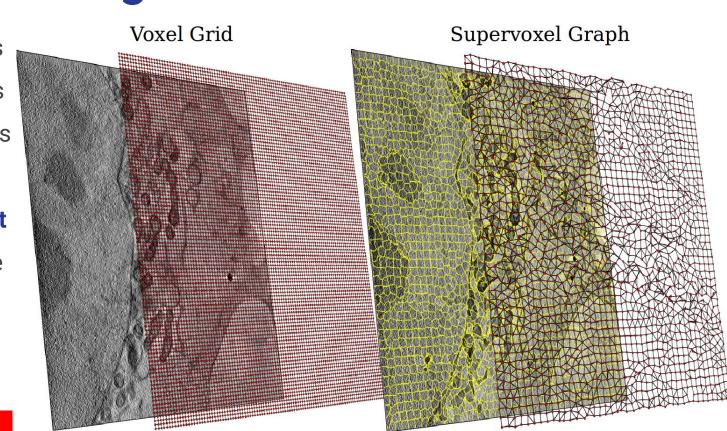
- Data points
- Descriptors
- Annotations
- Classifier
- Refinement
- Confidence



946x946x200 = 180M voxels

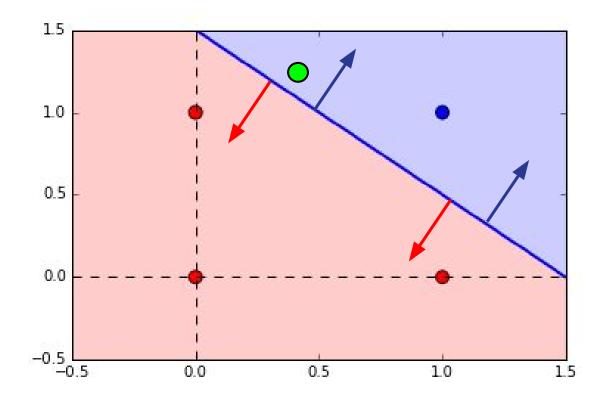


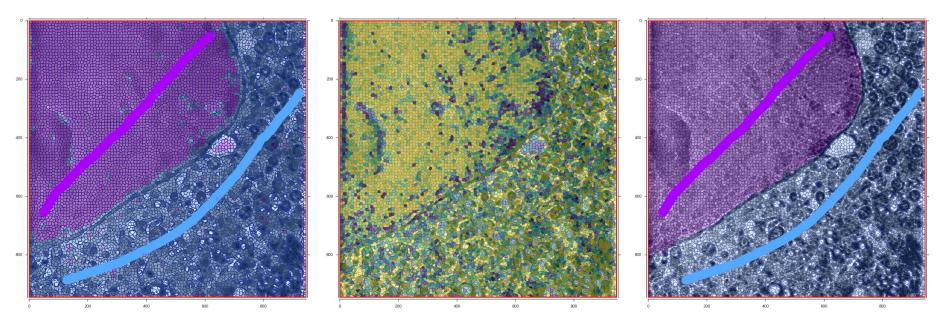
- Add Spatial Consistency to the Predictions
 - Encourage nearby **voxels/supervoxels** to have belong to the same class.



- Data points
- Descriptors
- Annotations
- Classifier
- Refinement
- Confidence

How confidence is the **Classifier** with the prediction it has made.





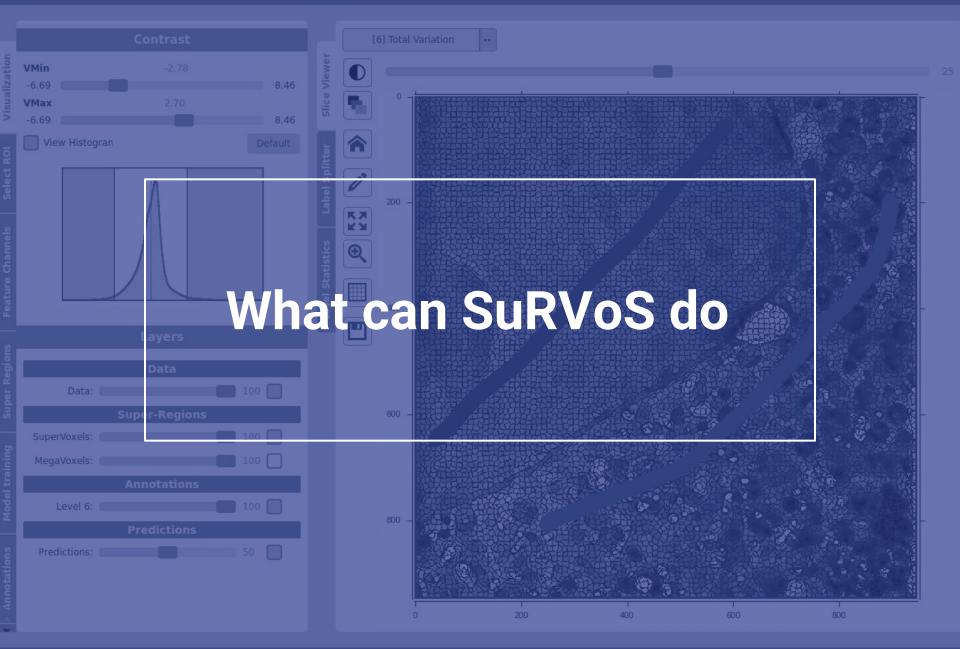
Classification

Confidence

Refinement

For large areas, a **single annotation in the central slide**, followed by training, classification and refinement is usually sufficient to accurately segment up to 100 slides of the volume.

e <u>H</u>elp



SuRVoS Features

Features:

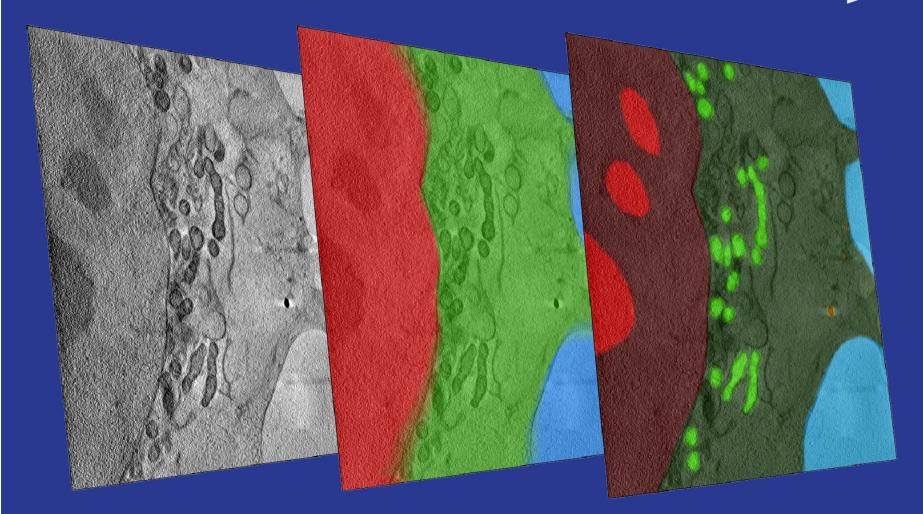
Result:

- Extract Super-Regions
- Compute Features
- Learn Models
- Identify individual objects

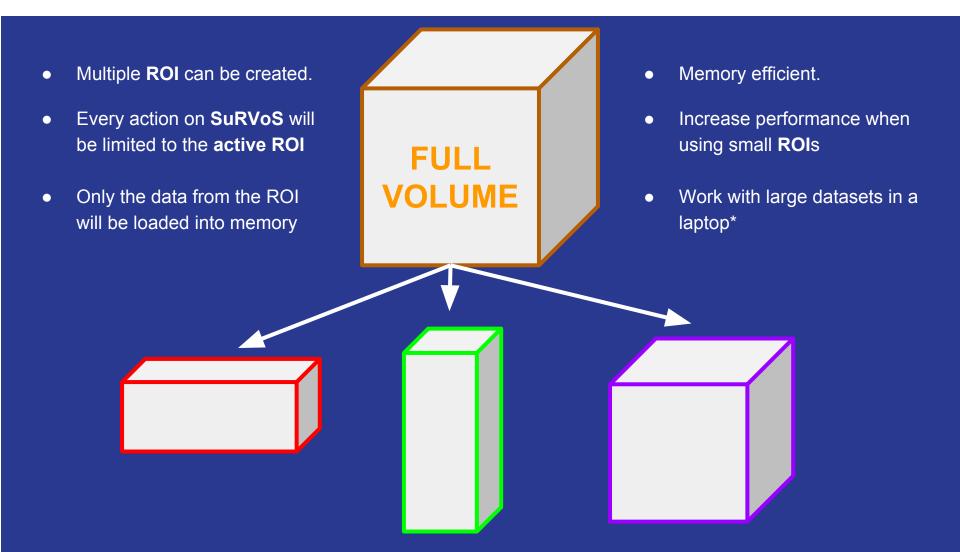
- → Faster Annotations and Segmentation
 - Data enhancement
 - Automatically segment areas
 - Extract measures and statistics between different object classes

Hierarchical Segmentation

Hierarchical segmentation layers



Regions of Interest (ROI)



SuRVoS Workspace

HDF5: on-disk storage (.h5/.hdf5 extension)

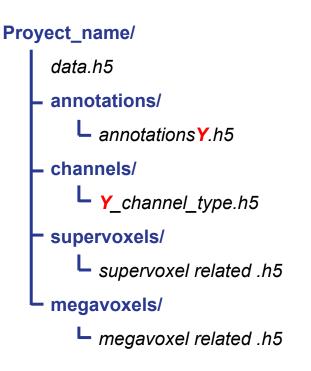
- Read data to memory on-the-fly
- Only load required data

Pros:

- Work with very large data (larger than RAM)
- Work on Region of Interests efficiently
- Safe. Robust.

Cons:

• Performance loss on loading data to memory and saving to disk.



e <u>H</u>elp

SuRVoS: Current State and Future Direction

Now:

- Assist user annotations with regions
- Segment large regions with models
- Identify individual objects

Maybe:

• Segment small organelles automatically (with enough annotations)

Work in progress!

Future:

- 1. Better super-regions
 - a. Multiple super-regions
- 2. Learn from ROI, apply to other ROI
- 3. Better Training Models
- 4. Better guidance to user using Patches
 - a. Patch based Active Segmentation
- 5. Learn from one volume, apply to others.
- 6. Combine different Imaging Modalities
- 7. Data base of segmentations for fully automatic segmentation



https://DiamondLightSource.github.io/SuRVoS